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TIME CONSTANT ENERGY REGULATOR
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SUMMARY: A regulator for linear plants is proposed whose mode of operation

allows plant perturbations to go unchecked as long as they are within some

bounding hypersurface in perturbed state space. This bounding hypersurface
» represents some limit on acceptable plant perturbations. When a perturbed
state attains the hypersurface a linear feedback control is initiated,
optimally driving the state back toward the origin for a fixed amount of
time with a fixed amount of control energy. At control shutdown there
exists some residual perturbation and the mode of operation continues.

A conventional solution for the optimal control for each operation
leads to an equation for an undetermined multiplier which depends on the
initial phase of the plant. With the above mode of operation the initial
phase is not known a priori so that an on-line solution to the multiplier
equation is necessary to specify the control prior to each operation. It
is shown in this paper how this requirement may be avoided by interpreting
the multiplier equation geometrically as a family of hypersurfaces in state
space. By utilizing one of these hypersurfaces as the bounding hypersurface
required in the mode of operation, the optimal control law may be specified

before the regulator is put into service.

The results of the regulator

applied to a linear oscillator are given to illustrate its mode of

operation.

PROBLEM STATEMENT

The system considered may be written
in vector-matrix notation

% = F(t)x + G(t)u ( = é%) (1)

vwhere xeR? is the plant perturbation

from equilibrium and ueR® is the con-
trol. The system is assumed to be com-
pletely controllable.t

The regulator's mode of operation
allows plant perturbations due to dis-
turbances and possibly plant instability
with no contrcl action as long as they
are within some bounding hypersurface in
perturbed state space. This bounding
hypersurface represents the limiting
value of acceptable plant perturbations.
When a perturbation attains this hyper-
surface, say at time to, the control

is initiated and operates for a fixed
amount of time, tj - ty, to drive the
perturbed state back toward the origin.
At t; the control is shut down and the
regulator's cycle repeats. This paper
deals with the control and the bounding
hypersurface which determines the initial
phase (xo, to) for each operation.

The control is to be designed so that

for each operation it (1) minimizes the
error criterion

2 tl
+;f
A 2 Jy

O

2
x(t) dt

Q(t)

x(t1)

g=1
2

(2)

where A and Q(t) are finite symmetric
nonnegative definite matrices at least
one of which is positive definite and

Q(t)eC® for all te[@o,ti] and (ii)
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fzes a given control energy
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u(t) (3)

R(t) at

where R(t) 1s a symmetric positive
defipite matrix and R(t)eC® for all

t€[?o,ti]- The design admits plant per-

turbations at shutdown and the control
energy, E, may therefore be specified
less than the minimum energy required to
get to the origin. This procedure
avoids an unbounded control and other
associated problems. The minimum

energy, EC, is given by
2
Wl(to,t1)

where W(to,tl) is the controllability

matrix.l The bounding hypersurface
must, therefore, be such that (i) it
lies within the hypersurface defined by
the equation

2

1
E = =
2

(5)

Xo

W l(to,t1)

and that (i1) all perturbations within
and on the bounding hypersurface are
acceptable, Requirement (ii) depends
on the accuracy with which the linear
equations represent the physical system
as well as the designer's needs.

SOLUTION FOR THE CONTROL

The first step is to adjoin (3) to
(2) with a constant positive real
Lagrange multiplier to give as the
adjoined criterion

2 t1 2
v = 1lx(t 1
Hlxen ||+ M/LO <51 I
2
+ Au(t) dt (6)
R(t)
3.4.5-2 .

As in reference 2 the conjugate variable
is denoted geRn and the Hamiltonian is

written
2
H(x,t,u,t) = % x
Qt)
+2t - [F(t)x + a(t)]
2
+ Alu (7)
R(t)

The Hamiltonian is then minimized with
respect to u to give as the optimal
control function

wo(t) = - % RI(t)a (+)e(t)  (8)

where £ 1is related to the system
through the canonic equations

x(t) F(t) - % R-1(t)a' (¢)| | x(t)
E(t) -Q(t) -F'(t) £(t)
(9)
This set of equations have the boundary
conditions2
x(to) = xo (10)
£(t1) = Ax(t1) (11)
X(t)tl)
To solve for &(t) let be a
E(t)tl)
set of solutions to (9) such that
X(t1,t1) = I (12)
=(t1,t1) = A (13)
Then by linearity
x(t) = X(t,t1)x(t1) (1h)
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e(t) = =(t,t1)x(t1) (15)
In reference 2 X(t,tj) is shown to be

the fundamental matrix of the optimally
controlled plant. Then with the energy

level, E, chosen such that x(ti) £ 0,
X-1(t,t1) exists for all te[@o,ti]
and t(t) may be written

e(t) = =(t,t0)x Mt,t1)x(t)  (16)

Equations (16) and (8) give for the
optimal control

K°(t,x) =_% R-1(t)6' (£)=(t,t )X 1(t,t )x
(17)

vhere K°(t,x) replaces u°(t) to
denote optimal feedback control. A has
yet to be determined; however, we may
examine its relation to the specific
energy level, E, the fixed time,

t1 - t5, and the system dynamics.

Substitution of (15) into (8) gives
the control in terms of the terminal
state. This then may be substituted
into (3) to give as the constraint
equation

2
E = ||x(%1) (18)
D
where
ty
D = _1.2_ E1(t,t1)6(t)R-1(t)
2N to
X G'(t)=(t,t1)dt (19)

Then by utilizing (14%) in (18), the
final form of the energy constraint
equation is

2
(20)

B
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where

B = X~1%(t0,t1) X 1(to,t1)  (21)
Now the standard solution to the
problem would require the solution of
(20) for a positive real multiplier
prior to each operation since from (20)
and (21) it is clear that, in general,
A is a function of the initial phase
(x0,t0). To this end an analog method

for continuously tracking the multiplier
as a function of the phase for the case
when Q(t) = O is essentially given in
reference 3. A method will now be shown
whereby the on-line tracking or computing
of AN can be avoided by employing the
aforementioned concept of a bounding
hypersurface.

THE BOUNDING HYPERSURFACE

The regulator's mode of operation
requires that some activation criterion
be used to begin each control operation.
In view of this, it is noted that for
each to and with A as a parameter,
(20) defines a family of hypersurfaces
in state space from which the optimal
control associated with A will use E
amount of energy. If, for each tg,
there is a member of this family suitable
for a bounding hypersurface, then by
using these hypersurfaces to define a
bounding hypersurface varying with to,
the on-line computation of A(to) may
be avoided.

The method of using this activation
criterion is to feed back the state with
time varying gains to form

e~ |5

As long as e 1is less than E the con-
trol remains off, but when e equals E
the control is initiated and the optimal
feedback control law associated with the
Mto) is used. Of course, for time
constant systems there will only be cne
A so the bounding hypersurface will not
be time varying.

2
(22)

B(Mto) ,to)
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It should be pointed out that (18)
is a direct indication of the effective-
ness of the system design since for
each tp it defines the hypersurface
to which the control will drive the
state,

A SIMPLE EXAMPLE

In the interest of simplicity, the
example plant is a constant undamped
harmonic oscillator. In spite of its
simplicity, it illustrates the regula-
tor's usefulness on the class of con-
stant neutrally stable systems subject
to small disturbances. The symmetric
spinning space vehicle is a member of
this class in which considerable
interest has been shown.%,5,6,7

The vector-matrix equation is
written

X1 0 1)1x, 0
= + u (23)
X5 -1 OfIxs 1
where Xy is the displacement and x,

1s the velocity. The system is required
to run from to =0 to ty; =T. The
controllability matrix is then computed
with the result

f_ -
T 1 1 1
= - =gin 27 = - =
5 L sin m L cos 2T
W(o,T) = %
1 1 T 1
= - —=cos 27 = + = sin 27
TR 2 T
(2k)

W(o,T) may be shown to be positive
definite for all T # $ so the system
is controllable.

To further simplify the problem,
only the terminal error will be mini-
mized and the A matrix will be the
identity matrix. This makes the error
criterion circular in nature

3.4.5-4

J = .zl.Eci(T) + xgmﬂ (25)

This norm is constant for the free plant
and is a good measure of the system per-
turbation from equilibrium. Typically,
neutrally stable systems have constants
of free motion which may be expressed as
quadratic forms in the state variables.
One of these forms is often useful as an
error criterion.

The energy constraint is chosen as
half the integral square energy by
letting R = 1 which gives

T
E =41 b/\ w2(t)at (26)
2 Jo
This completes the problem statement.
Use of equation (9) results in the
canonic differential equations
il o 1 0 Ol1x1
: 1
b4 -1 © 0 - =]|x
2 N | R
Eq o 0o o0 1le,
Es 0o 0 -1 ofles
(27)

The solution of (27) with the appropriate
terminal conditions results in

Féos(T -t) -sin(T - t;
(28)

cos(T - t)

—d

sin(T - t)
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and

=

-1 _ 1
X (t,T)—Z
:Sglif:il sin(T-t)
L 2\
where
2 2
A=[1+%(T—ta —[Elxsin(T-tﬂ

(30)

Direct substitution of (28) and (29)
into (17) and (19) results in the
optimal feedback control law

Ko(t,x) = %[(—2%: sin?(T - t))xl
1
+ (g('r -t) +1

- L sin(T - t)eos(T - t)>x2

2\
(31)
and the D matrix
T _sin 2T sineT
2 4 2
1
D= — (32)
N2
sin°T T + sin 27
2 2 N
L -

With the substitution of (29) and (32)
into (21), the B matrix is determined.
E, T, and some point desired to lie on
the control activation hypersurface may
now be chosen so that A may be
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(2A+T-t)cos(T-t)+ 513\. sin(T-t)

n\..u.rll,,
——-——-( ““2)\ t) sin(T-t)
SEItE:El cos(T-t) - L sin(T-t)
2A 2A

(29)

computed and the activation hypersurface
determined.

From X 1(o,T) and D, it is evident
that with T an even multiple of =, B
defines a circular hypersurface. This
indicates that, in general, the time of
operation may be a vital parameter in
shaping the B-hypersurface. In the
example, however, a more general case has
been chosen by setting T = 10. Since
the period of the oscillator's free
motion is 2n, the control is therefore
in operation for more than one period. A
displacement of 5 and a zero velocity was
chosen rather arbitrarily to be on the
B-hypersurface. By using this point and
(24) in equation (4), the minimum energy
is found to be 2.62 units. The energy in
this problem was chosen as 2.5 units to
be within this limit. Equation (20) was
then solved for A. Its value was 0.115.
The resulting B-hypersurface and
D-hypersurface which are slightly ellip-
tical are shown in figure 1. A typical
trajectory during a control operation is
shown between the two hypersurfaces. The
time history of this trajectory and its
assoclated control are shown in figure 2.

CONCLUSIONS

A special family of hypersurfaces in
state space has been identified with the
optimal linear regulator. It has been
shown that on-line computation of the
multiplier associated with the control
constraint may be eliminated by choosing
a member of this special family as the
regulator's activation criterion. This
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results in a relatively simple optimal
control system suitable for repetitive
operation.
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Figure 1.- Hypersurface geometry and a typical optimal trajectory.
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Figure 2.- Typical trajectory and control time history.
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